
Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

 Code Optimization

Principle Sources of Optimization

• Preserve the semantics.

• Apply relatively low-level semantic transformations.

o Algebraic identities like i + 0 = i

o Performing the same operation on the same values yields the same

result => i *1 = 1 * i = i

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

Quick Sort

void quicksort (int m , int n)

{

/* recursively sorts a r[m] through a [n] */

 int i , j ;

 int v , x ;

 if (n <= m) return ;

 i = m - 1 ; j = n ; v = a [n] ;

 while (1) {

 do i = i + 1 ; while (a [i] < v) ;

 do j = j - 1 ; while (a [j] > v) ;

 if (i >= j) break ;

 x = a [i] ; a [i] = a [j] ; a [j] = X ;

 /* swap a [i] , a [j] */

}

 x = a [i] ; a [i] = a [n] ; a [n] = X ;

 /* swap a [i] , a [n] */

quicksort (m , j) ;

quicksort (i+ 1 , n) ;

Semantics-Preserving Transformations

• A program will include several calculations of the same value, such as an

offset in an array.

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

• Examples of function-preserving (or semantics-preserving) transformations

are,

o Common-sub expression elimination,

o Copy propagation,

o Dead-code elimination, and

o Constant folding

For More Details Click Here:

https://www.wikitechy.com/tutorials/compiler-design/code-

optimization

https://www.wikitechy.com/tutorials/compiler-design/code-optimization
https://www.wikitechy.com/tutorials/compiler-design/code-optimization

