
Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

 Syntax tree in Compiler Design

Construction of Syntax Tree

• Syntax directed definitions are very useful for construction of syntax trees.

Each node in a syntax tree represents a construct. The children of the node

represent the meaningful components of the construct.

• A syntax-tree node representing an expression E1 + E2 has label + and two

children representing the subexpressions E1 and E2

• The nodes of a syntax tree are implemented by objects with a suitable

number of fields. Each object will have an op field that is the label of the

node.

• The objects will have additional fields as follows:

o If the node is a leaf, an additional field holds the lexical value for the

leaf. A constructor function Leaf (op, val) creates a leaf object.

Alternatively, if nodes are viewed as records, then Leaf returns

a pointer to a new record for a leaf.

o If the node is an interior node, there are as many additional fields as

the node has children in the syntax tree. A constructor function Node

takes two or more arguments: Node(op, c1, c2, . . . , ck) creates an

object with first field op and k additional fields for the k children c1, . . .

, ck.

Example

• The L-attributed definition performs the same translation as the S-attributed

definition.

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

p1 = new Leaf (id, entry-a);

p2 = new Leaf (num, 4);

p3 = new Node ('-', p1, p2);

p4 = new Leaf (id, entry-c);

p5 = new Node ('+', p3, p4);

For More Details Click Here:

https://www.wikitechy.com/tutorials/compiler-design/syntax-tree-

in-compiler-design

https://www.wikitechy.com/tutorials/compiler-design/syntax-tree-in-compiler-design
https://www.wikitechy.com/tutorials/compiler-design/syntax-tree-in-compiler-design

