
Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

 Type Checking in Compiler Design

Type Systems

• A type system is a collection of rules that assign types to program constructs

(more constraints added to checking the validity of the programs, violation of

such constraints indicate errors).

• A languages type system specifies which operations are valid for which types.

• Type systems provide a concise formalization of the semantic checking rules.

• Type rules are defined on the structure of expressions.

• Type rules are language specific.

Type Expressions

• A type expression is either a basic type or is formed by applying an operator

called a type constructor to a type expression. The sets of basic types and

constructors depend on the language to be checked.

The following are some of type expressions:

• A basic type is a type expression. Typical basic types for a language include

boolean, char, integer, float, and void(the absence of a value). type_error is a

special basic type.

• A type constructor applied to type expressions. Constructors include:

o Arrays : If T is a type expression, then array(I, T) is a type expression

denoting the type of an array with elements of type T and index set I. I

is often a range of integers. Ex. int a[25] ;

Facebook.com/wikitechy twitter.com/WikitechyCom © Copyright 2016. All Rights Reserved.

| Compiler Design Tutorials

o Products : If T1 and T2 are type expressions, then their Cartesian

product T1 x T2 is a type expression. x associates to the left and that it

has higher precedence. Products are introduced for completeness; they

can be used to represent a list or tuple of types (e.g., for function

parameters).

o Records : A record is a data structure with named fields. A type

expression can be formed by applying the record type constructor to

the field names and their types.

o Pointers : If T is a type expression, then pointer (T) is a type expression

denoting the type "pointer to an object of type T". For example: int a;

int *p=&a;

o Functions : Mathematically, a function maps depends on one set

(domain) to another set(range). Function F : D -> R.A type expression

can be formed by using the type constructor -> for function types. We

write s -> t for "function from types to type t".

For More Details Click Here:

https://www.wikitechy.com/tutorials/compiler-design/type-

checking-in-compiler-design

https://www.wikitechy.com/tutorials/compiler-design/type-checking-in-compiler-design
https://www.wikitechy.com/tutorials/compiler-design/type-checking-in-compiler-design

